NEET 2025: 4-Day Chemistry Preparation Checklist

Preparation Mindset

- [] Commit to the #4DaysChallenge
- [] Set aside negative feelings about mock test results
- [] Create a quiet study environment
- [] Plan study sessions with short breaks
- [] Focus only on high-yield topics in the syllabus

Inorganic Chemistry

Chemical Bonding

- [] Hybridization concepts (shapes and structures)
- [] Molecular Orbital Theory (MOT)
 - [] Bond order calculations
 - [] Bond strength and length relationships
 - [] Paramagnetic vs diamagnetic character
- [] Dipole moment concepts and calculations

Coordination Chemistry

- [] Valence Bond Theory (VBT) concepts
- [] Crystal Field Theory (CFT)
 - o [] Spectrochemical series
 - [] CFSE calculations (high spin vs low spin)
- [] Magnetic moment calculations
- [] Color of complexes (d-d transitions)

Block Chemistry (P, D, F blocks)

- [] P-block trends:
 - [] Group 13: Ionization enthalpy and radius
 - o [] Group 14: Ionization enthalpy and radius
 - o [] Groups 15-17: Hydride properties
 - [] Electron gain enthalpy of Groups 16 & 17
 - o [] Bond dissociation energy in Group 17
- [] Oxidation states (stability patterns)
- [] Hydrides (acidity/basicity)
- [] Acidity of oxides and oxoacids

- o [] Phosphorous oxoacids
- o [] Sulfur oxoacids
- [] D and F Block:
 - [] KMnO₄ reactions and products
 - [] K₂Cr₂O₇ reactions and products
 - o [] Lanthanoid electronic configurations

Physical Chemistry

Thermodynamics

- [] First Law (ΔU = q + w)
- [] Relation between ΔU and ΔH
- [] Heat capacity formulas (CPm and CVm)
- [] State and path functions
- [] Work done formulas
 - o [] Isothermal reversible/irreversible
 - o [] Adiabatic processes
- [] Gibbs-Helmholtz equation

Equilibrium

- [] KP-KC relationship
- [] Le Chatelier's principle applications
- [] Ionic equilibrium concepts
 - o [] KSP and solubility calculations
 - [] Common ion effect on solubility
 - o [] pH calculations (various solutions)
 - [] Buffer solutions

Atomic Structure

- [] Bohr model formulas
 - [] Radius and velocity calculations
 - o [] Total energy formula
 - [] Time period and frequency variations
- [] Rydberg equation
 - [] Lyman and Balmer series
- [] Quantum numbers
 - [] Values and relationships
 - o [] Radial nodes formula (n-l-1)

Chemical Kinetics

- [] Half-life formulas
- [] Zero-order reactions
- [] First-order reactions

• [] Arrhenius equation and graph interpretation

Solutions

- [] Colligative properties
 - o [] Formulas for all four properties
 - \circ [] i and α relationships
 - o [] n-values for association/dissociation
- [] Ideal and non-ideal solutions
 - o [] Positive/negative deviations
 - o [] Azeotrope properties
- [] Raoult's law
- [] Henry's law

Electrochemistry

- [] Nernst equation
- [] Conservation of ΔG ($n_3E_3 = n_2E_2 + n_1E_1$)
- [] G° and K relationship
- [] Conductance formulas
 - o [] Kohlrausch's law
 - o [] Conductivity relationships
- [] Faraday's laws

Biomolecules

- [] Glycosidic linkages
- [] Amino acids
- [] DNA formations and structure

Organic Chemistry

General Organic Chemistry (GOC)

- [] BARHI principles
 - o [] Bonding concepts
 - o [] Aromaticity
 - o [] Resonance
 - [] Hyperconjugation
 - [] Inductive effect
- [] Intermediate stability
- [] Geometrical isomerism
- [] Stereoisomers (2ⁿ formula)
- [] E/Z configuration
- [] R/S configuration
- [] Directing effects (ortho/para/meta)

- [] Carbocation rearrangements
- [] Tautomerism

Naming Reactions (Review All)

- [] Aldol condensation
- [] Cannizzaro reaction
- [] Etard reaction
- [] Reimer-Tiemann reaction
- [] HVZ reaction
- [] Fittig reaction
- [] Friedel-Crafts reactions
- [] Clemmensen reduction
- [] Wolff-Kishner reduction
- [] Gabriel phthalimide synthesis
- [] Finkelstein reaction
- [] Swartz reaction
- [] Dow process
- [] Cumene process
- [] Balz-Schiemann reaction
- [] Carbylamine reaction
- [] Rosenmund reduction
- [] Gatterman reaction
- [] Sandmeyer reaction
- [] Gatterman-Koch reaction
- [] Hoffmann reaction
- [] Williamson synthesis

Important Reagents & Tests

- [] Hinsberg test
- [] Lucas test
- [] Tollens' reagent
- [] Fehling's solution
- [] lodoform test
- [] Nitrous acid reactions
- [] Beer's reagent
- [] Ozonolysis reactions
- [] Grignard reagent reactions

Key Reaction Types

- [] Electrophilic substitution reactions
- [] KOH reactions (aqueous vs alcoholic)
- [] Oxidizing agents (mild vs strong)
- [] Reducing agents (LiAlH₄ vs NaBH₄)
- [] Ether + HI reaction
- [] Carbonyl derivatives formation

- [] Dehydrating agent reactions
- [] Enolate reactions

Final Exam Preparation

- [] Take one full-length practice test
- [] Practice under exam-like conditions
- [] Review time management strategy
- [] Practice OMR sheet filling
- [] Review answering strategy (Bio/Physics/Chemistry order)
- [] Review past NEET papers (2022-2024)
- [] Utilize study resources (links in description)

Daily Progress Tracking

•	Day 1 (//): Topics completed:	
•	Day 2 (//): Topics completed:	
•	Day 3 (//): Topics completed:	
•	Day 4 (//): Topics completed:	

Priority Topics If Time Is Limited

- 1. Chemical Bonding Hybridization
- 2. Nernst Equation & Electrochemistry basics
- 3. First Law of Thermodynamics
- 4. GOC BARHI principles
- 5. Key Naming Reactions
- 6. Colligative Properties
- 7. Gibbs-Helmholtz equation
- 8. Half-life and First-order kinetics

Remember: Don't waste time on S-block chemistry (not in syllabus)!

After completing the challenge, comment "challenge completed" on the video. All the best for NEET 2025!