Summary and Notes for Exam Preparation: Halogenoalkanes

1. Introduction to Halogenoalkanes

Structure and Classification

- General formula: R-X (X = F, Cl, Br, I)
- Classification:
 - \circ Primary (1°): RCH $_2\,$ X
 - Secondary (2°): R₂ CHX
 - Tertiary (3°): R₃ CX

Physical Properties

- 1. Boiling Points
 - Increase down group: RF < RCl < RBr < RI
 - Due to increasing van der Waals forces
- 2. Solubility
 - Insoluble in water
 - Soluble in organic solvents
 - Higher density than water

Example: Comparing Boiling Points CH₃ CH₂ F (BP: -38°C) CH₃ CH₂ Cl (BP: 12°C) CH₃ CH₂ Br (BP: 38°C) CH₃ CH₂ I (BP: 72°C)

2. Reactivity Trends

Order of Reactivity

C-F < C-Cl < C-Br < C-I

Factors Affecting Reactivity

1. Bond Strength

- C-F: 485 kJ/mol
- C-Cl: 340 kJ/mol
- C-Br: 280 kJ/mol
- C-I: 228 kJ/mol
- 2. Bond Polarity
 - Decreases down group
 - F most electronegative
 - \circ I least electronegative

Example Calculation: Calculate the relative rate of hydrolysis: CH_3 Br vs CH_3 I

• Rate ratio ≈ 1:4 (due to C-I being weaker)

3. Nucleophilic Substitution Reactions

General Mechanism

 $R-X + Nu^- \rightarrow R-Nu + X^-$

Common Nucleophiles

- 1. OH⁻ (hydroxide ions)
- 2. CN⁻ (cyanide ions)
- 3. NH₃ (ammonia)
- 4. ROH (alcohols)

4. SN2 Mechanism (Primary Halogenoalkanes)

Characteristics

- Single step mechanism
- Backside attack
- Inversion of stereochemistry

Step-by-Step Process

- 1. Nucleophile approaches from behind
- 2. Transition state forms
- 3. Leaving group departs
- 4. Product forms with inverted configuration

Example: $CH_3 \ CH_2 \ Br + OH^- \rightarrow CH_3 \ CH_2 \ OH + Br^-$

5. SN1 Mechanism (Tertiary Halogenoalkanes)

Characteristics

- Two-step mechanism
- Carbocation intermediate
- Racemic mixture forms

Steps

1. Slow step (rate-determining)

- C-X bond breaks
- Carbocation forms
- 2. Fast step
 - Nucleophile attacks carbocation
 - Product forms

Example: (CH₃)₃ CBr \rightarrow (CH₃)₃ C⁺ + Br⁻ (CH₃)₃ C⁺ + OH⁻ \rightarrow (CH₃)₃ COH

6. Substitution with Aqueous Alkali

Reaction Conditions

- Temperature: 50-60°C
- Solvent: Water/ethanol mixture
- Base: NaOH or KOH

Products

 $\mathsf{R}\text{-}\mathsf{X} + \mathsf{O}\mathsf{H}^{\text{-}} \to \mathsf{R}\text{-}\mathsf{O}\mathsf{H} + \mathsf{X}^{\text{-}}$

Example: $CH_3 CH_2 Br + OH^- \rightarrow CH_3 CH_2 OH + Br^-$

7. Substitution with Cyanide lons

Conditions

- Solvent: Ethanol
- Temperature: 60-80°C
- Source: KCN or NoCN

Products

 $R-X + CN^- \rightarrow R-CN + X^-$

Important: Forms nitriles (extension of carbon chain)

8. Substitution with Ammonia

Conditions

- Solvent: Ethanol
- Temperature: 50-60°C
- Pressure: Sealed container

Products

 $R-X + NH_3 \rightarrow R-NH_2 + HX$

9. Elimination Reactions

E2 Mechanism (Primary/Secondary)

- Single step
- Base removes β-hydrogen
- Alkene forms

Example

 $CH_3 CH_2 CH_2 Br + OH^- \rightarrow CH_3 CH=CH_2 + H_2 O + Br^-$

E1 Mechanism (Tertiary)

- Two-step process
- Carbocation intermediate
- More common in tertiary halogenoalkanes

10. Industrial Uses

1. Fluoropolymers

- Non-stick coatings (PTFE)
- Properties:
 - Chemical inertness
 - Heat resistance
 - Low friction

2. Anaesthetics

- Halothane (CF₃ CHClBr)
- Properties:
 - Non-flammable
 - $\circ \quad \text{Controlled volatility} \\$
 - Chemical stability

3. CFC Substitutes

1. HFCs (Hydrofluorocarbons)

- Zero ODP (Ozone Depletion Potential)
- High GWP (Global Warming Potential)
- 2. HFEs (Hydrofluoroethers)
 - Low GWP
 - Used as solvents
 - Industrial cleaning

Practice Questions

- 1. Explain why tertiary halogenoalkanes undergo SN1 reactions.
- 2. Compare the reactivity of different halogenoalkanes.
- 3. Draw the mechanism for: a) SN2 reaction of CH $_3$ Br with OH $^-$ b) E2 elimination of CH $_3$ CH $_2$ Br

Exam Tips

- 1. Mechanisms
 - Show all curly arrows
 - Include partial charges
 - Show transition states
- 2. Reactions
 - Learn conditions
 - Know nucleophiles
 - Remember products
- 3. Environmental Chemistry
 - ODP vs GWP
 - Alternatives to CFCs
 - Environmental impact

Key Definitions

- 1. Nucleophile: Electron-pair donor
- 2. Leaving group: Group that departs with electron pair
- 3. Carbocation: Carbon with positive charge
- 4. Elimination: Formation of double bond