Summary and Notes for Exam Preparation: Hydrocarbons

Alkanes and Homologous Series

Key Concepts:

- Alkanes are hydrocarbons with the general formula CnH2n+2
- They form a homologous series with similar chemical properties but gradually changing physical properties

Characteristics of Homologous Series:

- 1. Same general formula (CnH2n+2)
- 2. Differ by CH2 unit between consecutive members
- 3. Similar chemical properties
- 4. Gradual change in physical properties (e.g., boiling point, melting point)

First 10 Members of Alkane Series:

Name	Formula	Molecular Structure
Methane	CH4	Single C atom with 4 H atoms
Ethane	C2H6	2 C atoms with 6 H atoms
Propane	СЗН8	3 C atoms chain
Butane	C4H10	4 C atoms chain
Pentane	C5H12	5 C atoms chain

Hexane Ca	6 C	atoms chain
-----------	-----	-------------

Heptane C7H16 7 C atoms chain

Octane C8H18 8 C atoms chain

Nonane C9H20 9 C atoms chain

Decane C10H22 10 C atoms chain

Physical Properties Trends:

- 1. Boiling Point:
 - Increases with molecular mass
 - Due to stronger van der Waals forces
 - Example: Methane (-161.5°C) < Ethane (-88.6°C) < Propane (-42.1°C)
- 2. Physical State at Room Temperature:
 - C1 to C4: Gases
 - C5 to C17: Liquids
 - C18 and above: Solids

2. Sources of Alkanes

Natural Sources:

- 1. Crude Oil (Petroleum)
 - Primary source
 - Complex mixture of hydrocarbons
 - Formed from ancient marine organisms
- 2. Natural Gas
 - Mainly methane (85-95%)
 - Small amounts of ethane, propane, butane
- 3. Coal Bed Methane
 - Trapped in coal seams
 - Extracted during mining

Industrial Sources:

1. Cracking of Larger Hydrocarbons

- Thermal cracking
- Catalytic cracking Example: C10H22 \rightarrow C5H12 + C5H10 (decane \rightarrow pentane + pentene)
- 2. Hydrogenation of Alkenes Example: C2H4 + H2 \rightarrow C2H6 (ethene + hydrogen \rightarrow ethane)

3. Fractional Distillation of Crude Oil

Process Overview:

- 1. Crude oil is heated to 350-400°C
- 2. Hydrocarbons vaporize
- 3. Vapors rise in fractionating column
- 4. Different fractions condense at different temperatures

Column Structure:

- Tall tower with decreasing temperature from bottom to top
- Multiple collection trays at different heights
- Temperature gradient: 400°C (bottom) to 20°C (top)

Main Fractions (from top to bottom):

- 1. Gases (< 20°C)
 - C1 to C4
 - Uses: cooking gas, fuel
- 2. Petroleum Spirit/Naphtha (20-60°C)
 - C5 to C7
 - Use: petrol/gasoline
- 3. Kerosene (150-250°C)
 - C10 to C14
 - Use: jet fuel, heating
- 4. Diesel Oil (250-350°C)
 - C15 to C18
 - Use: diesel engines
- 5. Lubricating Oil (350-400°C)
 - C19 to C25
 - \circ Use: machinery lubrication
- 6. Residue (>400°C)
 - C25+
 - Use: bitumen, road surfacing

Trends in Fractions:

- 1. As temperature increases:
 - Carbon chain length increases
 - Viscosity increases

- Volatility decreases
- Color darkens

4. Saturated vs Unsaturated Hydrocarbons

Saturated Hydrocarbons (Alkanes):

- 1. Characteristics:
 - Single bonds only
 - Maximum number of hydrogen atoms
 - General formula CnH2n+2
- 2. Chemical Properties:
 - Less reactive
 - Undergo substitution reactions Example: CH4 + Cl2 → CH3Cl + HCl (methane + chlorine → chloromethane + hydrogen chloride)

Unsaturated Hydrocarbons:

- 1. Alkenes (CnH2n):
 - Contains C=C double bond
 - More reactive than alkanes
 - Undergo addition reactions Example: C2H4 + Br2 \rightarrow C2H4Br2 (ethene + bromine \rightarrow dibromoethane)
- 2. Alkynes (CnH2n-2):
 - Contains C=C triple bond
 - Very reactive
 - Multiple addition reactions possible

Testing for Saturation:

- 1. Bromine Water Test:
 - Saturated: Remains brown/orange
 - Unsaturated: Decolorizes from brown to colorless
- 2. Potassium Permanganate Test:
 - Saturated: Remains purple
 - Unsaturated: Decolorizes from purple to colorless

Exam Preparation Tips:

- 1. Practice drawing structural formulas
- 2. Memorize the first 10 alkanes and their formulas
- 3. Understand trends in physical properties
- 4. Know the different fractions from fractional distillation and their uses
- 5. Practice writing balanced equations for reactions
- 6. Remember tests for saturation/unsaturation

Example Exam Questions:

Question: "Draw the structural formula for butane and show its combustion reaction." Answer: Structural formula: CH3-CH2-CH2-CH3 Combustion: C4H10 + $6.5O2 \rightarrow 4CO2 + 5H2O$ Question: "Explain why pentane has a higher boiling point than ethane." Answer: Pentane (C5H12) has more carbon atoms than ethane (C2H6), resulting in stronger van der Waals forces between molecules. This requires more energy to overcome, leading to a higher boiling point. Question: "Name the process that converts longer chain hydrocarbons

into shorter ones." Answer: Cracking (either thermal or catalytic). Example: C10H22 \rightarrow C6H14 + C4H8

Reactions of Alkanes

Key Characteristics:

- Alkanes are generally unreactive due to strong C-C and C-H bonds
- Require high temperatures or UV light for reactions
- Main reaction types: combustion and substitution

Types of Reactions:

- 1. Combustion (complete and incomplete)
- 2. Free radical substitution
- 3. Cracking (thermal and catalytic)

2. Combustion of Alkanes

Complete Combustion:

- Requires excess oxygen
- Products: CO2 and H2O
- General equation: CnH2n+2 + $(3n+1)/2 O2 \rightarrow nCO2 + (n+1)H2O$

Examples:

- 1. Methane: CH4 + 2O2 \rightarrow CO2 + 2H2O
- 2. Ethane: C2H6 + 3.5O2 \rightarrow 2CO2 + 3H2O
- 3. Propane: C3H8 + 5O2 \rightarrow 3CO2 + 4H2O

Incomplete Combustion:

- Limited oxygen supply
- Products: CO, C (soot), and/or H2O
- Example: 2CH4 + $3O2 \rightarrow 2CO + 4H2O$

Applications of Combustion:

- 1. Domestic Uses:
 - Cooking (natural gas stoves)
 - Heating (gas furnaces)
 - Hot water systems
- 2. Industrial Applications:
 - Power generation
 - Industrial furnaces
 - Manufacturing processes
- 3. Transportation:
 - Internal combustion engines
 - Jet engines
 - Rocket fuel

3. Pollution from Hydrocarbon Fuels

Major Pollutants:

- 1. Carbon Dioxide (CO2):
 - Greenhouse gas
 - Contributes to global warming
 - Source: Complete combustion
- 2. Carbon Monoxide (CO):
 - Toxic gas
 - Binds to hemoglobin
 - Source: Incomplete combustion
- 3. Sulfur Dioxide (SO2):
 - Acid rain formation
 - Respiratory irritant
 - Source: Sulfur impurities in fuel
- 4. Nitrogen Oxides (NOx):
 - Photochemical smog
 - Acid rain formation
 - Source: High-temperature combustion
- 5. Particulate Matter:
 - Respiratory problems
 - Reduced visibility
 - Source: Incomplete combustion

Environmental Effects:

- 1. Global Warming:
 - Increased average temperatures
 - Sea level rise
 - Climate change
- 2. Acid Rain:

- Building damage
- \circ Soil acidification
- Aquatic ecosystem damage

4. Catalytic Converters

Function:

- Converts harmful exhaust gases into less harmful substances
- Operates at high temperatures (300-600°C)
- Contains precious metal catalysts (Pt, Pd, Rh)

Structure:

- 1. Ceramic honeycomb structure
- 2. Washcoat (Al2O3)
- 3. Catalyst particles

Chemical Processes:

1. Oxidation of CO:

 $2CO + O2 \rightarrow 2CO2$

2. Oxidation of unburned hydrocarbons:

CxHy + O2 → CO2 + H2O

Reduction of NOx:

2NO + 2CO → N2 + 2CO2

3. $2NO + 2H2 \rightarrow N2 + 2H2O$

Applications:

- 1. Automotive vehicles
- 2. Industrial emissions control
- 3. Power plant emissions

5. Substitution Reactions of Alkanes

Overview:

• Replacement of H atoms with halogen atoms

- Requires UV light or high temperature
- Follows free radical mechanism

Free Radical Mechanism:

1. Initiation:

- UV light breaks halogen molecule
- Forms halogen radicals

 $Cl2 \rightarrow 2Cl$ •

2. Propagation:

- Two-step chain reaction
- Creates new radicals

Step 1: CH4 + Cl• \rightarrow CH3• + HCl

Step 2: CH3• + Cl2 \rightarrow CH3Cl + Cl•

cn

3. Termination:

- Radicals combine
- Chain reaction ends

 $Cl \cdot + Cl \cdot \rightarrow Cl2$

CH3• + Cl• → CH3Cl

CH3• + CH3• → C2H6

Example with Propane:

1. Initiation: Cop Cl2 \rightarrow 2Cl•

Propagation:

 $CH3CH2CH3 + Cl \bullet \rightarrow CH3CH2CH2 \bullet + HCl$

- 2. CH3CH2CH2• + Cl2 \rightarrow CH3CH2CH2Cl + Cl•
- 3. Termination:

CH3CH2CH2• + Cl• → CH3CH2CH2Cl

6. Practice Problems

Problem 1:

Write balanced equations for the complete combustion of: a) Butane (C4H10) b) Pentane (C5H12)

Solution: a) C4H10 + 6.5O2 → 4CO2 + 5H2O b) C5H12 + 8O2 → 5CO2 + 6H2O

Problem 2:

For the chlorination of methane: a) Write the initiation step b) Write both propagation steps c) Write three possible termination steps

Solution: a) Initiation: Cl2 \rightarrow 2Cl• b) Propagation:

- $CH4 + Cl \rightarrow CH3 + HCl$
- CH3• + Cl2 \rightarrow CH3Cl + Cl• c) Termination:
- $Cl \cdot + Cl \cdot \rightarrow Cl2$
- CH3• + Cl• \rightarrow CH3Cl
- CH3• + CH3• → C2H6

Problem 3:

Explain why the following equation represents incomplete combustion: 2C3H8 + 7O2 \rightarrow 4CO + 2CO2 + 8H2O

Solution:

- This is incomplete combustion because:
 - 1. CO is produced instead of CO2 for some carbon atoms
 - 2. Insufficient oxygen was available for complete oxidation
 - 3. Complete combustion would require 10O2 and produce only CO2

Problem 4:

Calculate the volume of oxygen needed for complete combustion of 50cm³ of propane.

Solution:

Equation: C3H8 + 5O2 \rightarrow 3CO2 + 4H2O

Ratio of C3H8:O2 = 1:5 Therefore, 50cm³ of propane needs 250cm³ of oxygen

The Alkenes

Characteristics:

- General formula: CnH2n
- Contains C=C double bond
- Unsaturated hydrocarbons
- More reactive than alkanes

First Six Members:

Name	Formula	Structure
Ethene	C2H4	CH2=CH2
Propene	C3H6	CH3-CH=CH2
Butene	C4H8	CH3-CH2-CH=CH2
Pentene	C5H10	СН3-(СН2)2-СН=СН2
Hexene	C6H12	СН3-(СН2)3-СН=СН2

Physical Properties:

- Lower boiling points than equivalent alkanes
- Slightly polar due to electron density in double bond
- Generally insoluble in water

2. Oil Refineries and Cracking

Oil Refinery Process:

- 1. Fractional Distillation
- 2. Cracking

3. Treatment processes

Cracking Methods:

1. Catalytic Cracking:

- Temperature: 450-500°C
- Pressure: Moderate
- Catalyst: Zeolites
- Produces more branched alkanes and alkenes

Process:

```
Long-chain alkane \rightarrow shorter-chain alkane + alkene
```

C15H32 → C8H18 + C7H14

Advantages:

- Lower temperature than thermal cracking
- Better yield of useful products
- More selective process

2. Thermal Cracking:

- Temperature: 700-900°C
- No catalyst
- Produces mixture of alkanes and alkenes

Example:

C10H22 → C6H14 + C4H8

Decane \rightarrow hexane + but-1-ene

Catalytic Cracker Components:

- 1. Reactor vessel
- 2. Regenerator
- 3. Fractionating column
- 4. Catalyst recycling system

3. Addition Reactions of Alkenes

1. Addition of Hydrogen (Hydrogenation):

- Conditions: Ni/Pt/Pd catalyst, 150°C
- Products: Alkanes

 $CH2=CH2 + H2 \rightarrow CH3-CH3$

Ethene \rightarrow Ethane

2. Addition of Steam (Hydration):

- Conditions: H3PO4 catalyst, 300°C, 60 atm
- Products: Alcohols

CH2=CH2 + H2O \rightarrow CH3CH2OH

Ethene \rightarrow Ethanol

3. Addition of Hydrogen Halides:

- Room temperature
- Products: Haloalkanes

CH3CH=CH2 + HBr → CH3CHBrCH3

Propene \rightarrow 2-bromopropane

Markovnikov's Rule:

- H attaches to C with more H atoms
- X attaches to C with fewer H atoms

4. Addition of Hologens:

- Room temperature
- Products: Dihalogenoalkanes

 $CH2=CH2 + Br2 \rightarrow CH2Br-CH2Br$

Ethene \rightarrow 1,2-dibromoethane

4. Electrophilic Addition Mechanism

Steps:

- 1. Formation of electrophile
- 2. Attack by π electrons
- 3. Formation of carbocation
- 4. Attack by nucleophile

Example with HBr:

Step 1: H-Br \rightarrow H+ + Br-Step 2: CH3CH=CH2 + H+ \rightarrow CH3CH+CH3 Step 3: CH3CH+CH3 + Br- \rightarrow CH3CHBrCH3

5. Oxidation of Alkenes

- 1. Cold Oxidation (Mild):
 - Reagent: Cold KMnO4 or K2Cr2O7
 - Products: Diols

CH2=CH2 + [O] + H2O → CH2OH-CH2OH

2. Hot Oxidation (Vigorous):

- Reagent: Hot KMnO4
- Products: Carboxylic acids

 $\mathsf{CH3CH=CH2+[O]} \rightarrow \mathsf{CH3COOH+CO2+H2O}$

6. Addition Polymerization

Process:

- Involves unsaturated monomers
- Double bonds break
- Monomers join to form long chains

Examples:

1. Polyethene from ethene:

n(CH2=CH2) → [-CH2-CH2-]n

2. Polypropene from propene:

 $n(CH3-CH=CH2) \rightarrow [-CH2-CH(CH3)-]n$

Types of Polyethene:

- 1. HDPE (High Density):
 - Linear chains
 - Higher density
 - Stronger
- 2. LDPE (Low Density):
 - Branched chains
 - Lower density
 - More flexible

7. Environmental Considerations

Disposal Methods:

- 1. Landfill:
 - Non-biodegradable
 - Long-term environmental impact
 - $\circ \quad \text{Space issues}$
- 2. Incineration:
 - Produces energy
 - Potential toxic emissions
 - Requires proper filtering
- 3. Recycling:
 - Mechanical recycling
 - Chemical recycling
 - Energy recovery

Environmental Issues:

- 1. Plastic Pollution
- 2. Microplastic contamination
- 3. Marine ecosystem damage
- 4. Greenhouse gas emissions

8. Exam Preparation

Tackling Polymer Questions:

1. Identifying Repeat Units:

- Look for the double bond in monomer
- Break the double bond
- Connect monomers

Example:

Monomer: CH2=CH-Cl

```
Repeat unit: [-CH2-CHC1-]
```

2. Identifying Monomers:

- Look for repeating pattern
- Add double bond
- Check valencies

Example:

Polymer: [-CH2-CH(CH3)-]

Monomer: CH2=CH-CH3

Practice Problems:

1. Draw the structure of the polymer formed from: a) CH2=CHCl b) CH2=C(CH3)2

Solution: a) [-CH2-CHCl-]n b) [-CH2-C(CH3)2-]n

2. Identify the monomer used to make: [-CH2-CH(C6H5)-]n

Solution: CH2=CH-C6H5 (styrene)

3. For the reaction between propene and HBr: a) Draw the mechanism b) Name the product c) Explain why this product forms

Key Points to Remember:

- 1. Always show all bonds clearly
- 2. Use curly arrows correctly in mechanisms
- 3. Apply Markovnikov's Rule
- 4. Remember polymerization conditions
- 5. Consider environmental impacts

Common Exam Questions:

- 1. Drawing mechanisms
- 2. Identifying products
- 3. Naming monomers/polymers
- 4. Environmental discussions
- 5. Industrial applications

Writing Tips:

- Use precise chemical terminology
- Show working clearly
- Include relevant equations
- Explain mechanisms step by step

• Link structure to properties