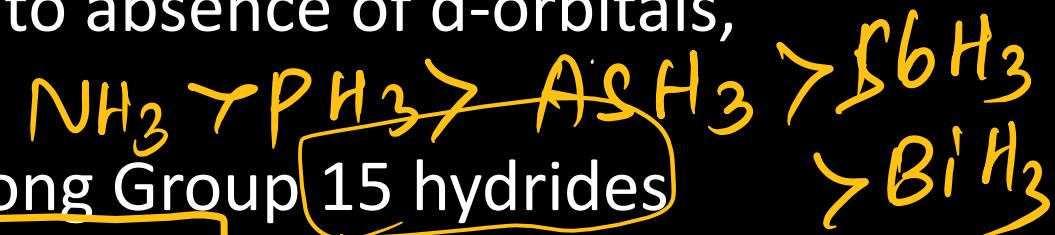


Inorganic chemistry theory questions


Question 16: Nitrogen Family Trends

Identify the INCORRECT statement about Group 15 elements:

- A. Nitrogen cannot form $d\pi-p\pi$ bonds due to absence of d -orbitals, hence $N\equiv N$ bond is very strong
- B. BiH_3 is the strongest reducing agent among Group 15 hydrides
- C. Nitrogen shows oxidation states from -3 to +5, but +5 state becomes less stable down the group
- D. NCl_3 is less stable than PCl_3 because nitrogen cannot expand its octet

Choose the most appropriate answer:

- A. C only
- B. D only
- C. A and D only
- D. All are correct

Inorganic chemistry theory questions

Question 15: Transition Metal Catalysis

Consider the following reactions catalyzed by transition metals:

- (i) Contact process: V_2O_5 catalyzes SO_2 oxidation
- (ii) Haber process: Fe catalyzes $\text{N}_2 + \text{H}_2$ reaction
- (iii) Hydrogenation: Ni catalyzes alkene + H_2 reaction
- (iv) Ostwald process: Pt catalyzes NH_3 oxidation

The reason transition metals act as good catalysts is:

- A. They can show variable oxidation states
- B. They have partially filled d-orbitals that can accept and donate electrons
- C. They can form interstitial compounds
- D. They have high enthalpy of atomization

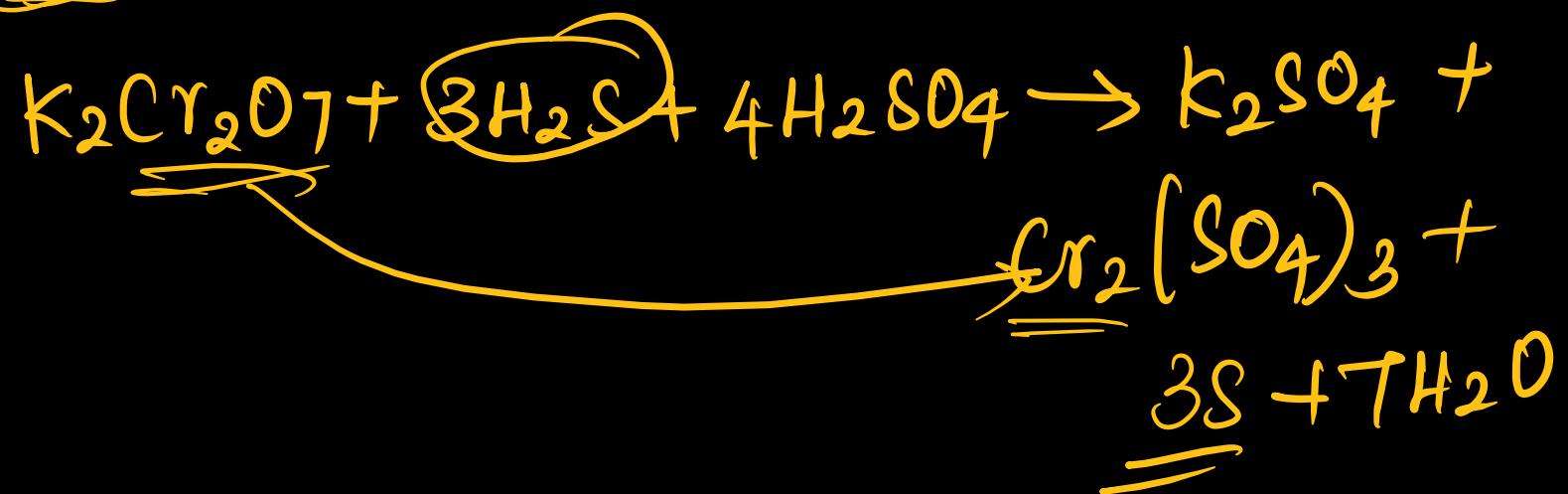
Choose the correct answer:

- A. A and B only
- B. A, B and C only
- C. B and D only
- D. A, B, C and D

Inorganic chemistry theory questions

Question 17: Dichromate Oxidation Products

$K_2Cr_2O_7$ in acidic medium can oxidize different substrates. Match the substrate with the product:


Substrate: $H_2S \rightarrow$ Product: ? S

Substrate: $SO_2 \rightarrow$ Product: ?

Substrate: $I^- \rightarrow$ Product: ?

When $K_2Cr_2O_7$ oxidizes H_2S in acidic medium, the products are:

- A. S and Cr^{3+}
- B. SO_2 and Cr^{3+}
- C. SO_3 and Cr^{2+}
- D. H_2SO_4 and Cr^{3+}

Inorganic chemistry theory questions

Question 18: Ligand Field Theory

Consider the following complexes:

- A. $[\text{CoF}_6]^{3-}$
- B. $[\text{Co}(\text{H}_2\text{O})_6]^{3+}$
- C. $[\text{Co}(\text{NH}_3)_6]^{3+}$
- D. $[\text{Co}(\text{CN})_6]^{3-}$

Arrange these complexes in increasing order of crystal field splitting energy (Δ_0):

- A. A < B < C < D
- B. D < C < B < A
- C. A < B < D < C
- D. B < A < C < D

Inorganic chemistry theory questions

Question 19: Inert Pair Effect

The inert pair effect is most pronounced in:

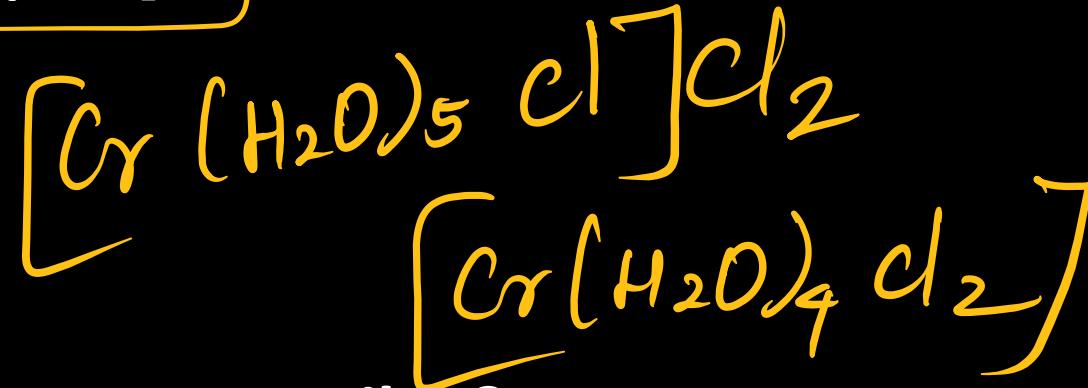
- A. Tl in Group 13, showing stable +1 oxidation state ✓
- B. Pb in Group 14, showing stable +2 oxidation state ✓
- C. Bi in Group 15, showing stable +3 oxidation state ✓
- ~~D. Po in Group 16, showing stable +4 oxidation state~~ +2

Choose the correct statements:

- A. A and B only
- B. A, B and C only
- C. B, C and D only
- D. A, B, C and D

+4

Inorganic chemistry theory questions

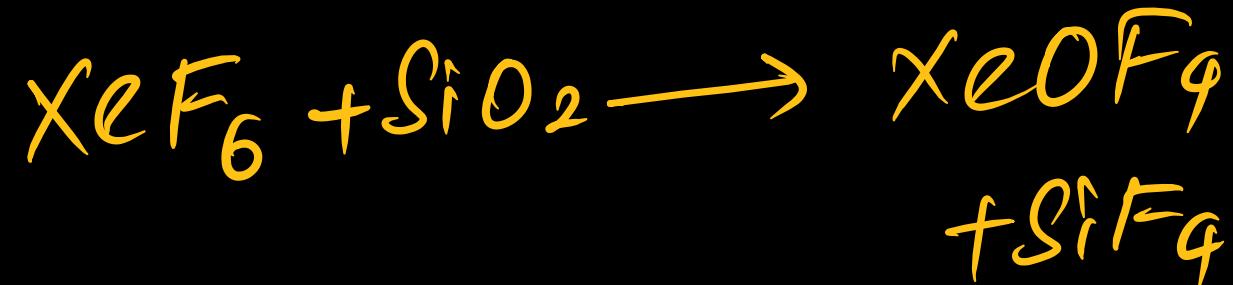

Question 20: Coordination Compound Nomenclature and Structure

The coordination compound $[\text{Cr}(\text{H}_2\text{O})_4\text{Cl}_2]\text{Cl}\cdot\text{H}_2\text{O}$ exhibits:

- (i) Ionization isomerism
- (ii) Hydrate isomerism
- (iii) Geometrical isomerism
- (iv) Optical isomerism

Which of the above types of isomerism are possible?

- A. (i), (ii) and (iii) only
- B. (i) and (iii) only
- C. (ii) and (iii) only
- D. (i), (ii), (iii) and (iv)


Inorganic chemistry theory questions

Which of the following statements about noble gas compounds are correct?

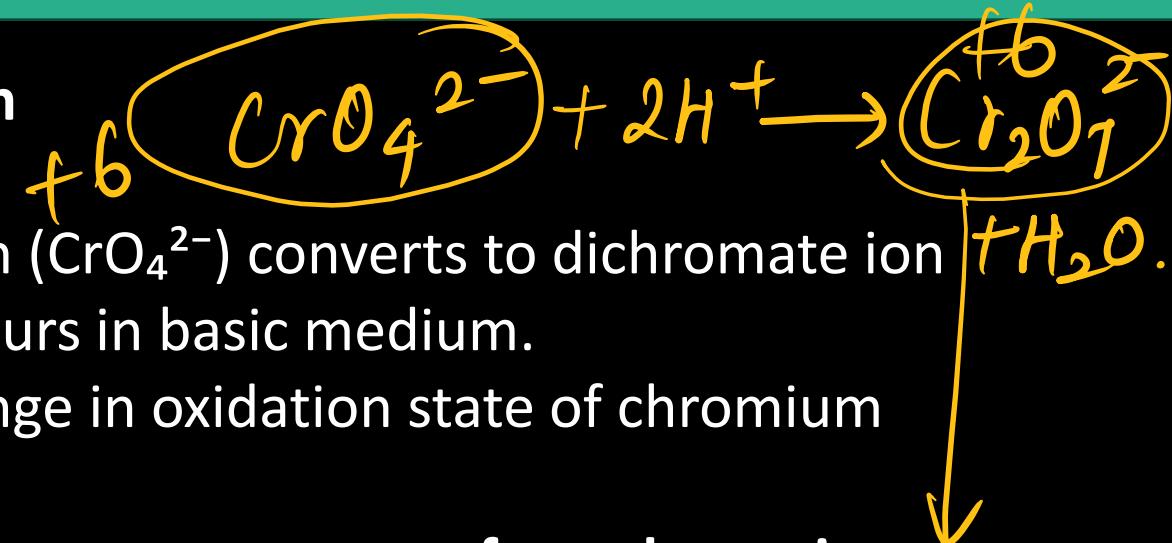
- A. XeF_2 , XeF_4 , and XeF_6 are all stable compounds with linear, square planar, and distorted octahedral geometries respectively
- B. XeF_6 reacts with SiO_2 to give XeOF_4
- C. XeO_3 and XeO_4 are both powerful oxidizing agents, with XeO_4 being explosive
- D. Xenon forms compounds because its ionization energy is comparable to that of oxygen

Choose the correct answer:

- A. A and C only
- B. B and C only
- C. A, B and C only
- D. B, C and D only

Inorganic chemistry theory questions

Question 1: Chromate-Dichromate Equilibrium


Given below are two statements:

Statement I: In aqueous solution, chromate ion (CrO_4^{2-}) converts to dichromate ion ($\text{Cr}_2\text{O}_7^{2-}$) in acidic medium, and the reverse occurs in basic medium.

Statement II: The conversion is due to the change in oxidation state of chromium from +6 in chromate to +7 in dichromate.

In the light of the above statements, choose the correct answer from the options given below:

- A. Statement I is true but Statement II is false
- B. Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I
- C. Statement I is false but Statement II is true
- D. Both Statement I and Statement II are false

Inorganic chemistry theory questions

Question 13: Permanganate Titration Calculation

In a titration, 20 mL of 0.1 M FeSO_4 solution required 'V' mL of 0.02 M KMnO_4 in acidic medium. The volume 'V' is:

(Given: $\text{MnO}_4^- \rightarrow \text{Mn}^{2+}$ and $\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}$)

- A. 8 mL
- B. 10 mL
- C. 20 mL
- D. 40 mL

$$N_1 V_1 = N_2 V_2 \quad n\text{-factor} = \underline{\underline{5}}$$

$$(M_1 \times n_1) \times V_1 = (M_2 \times n_2) V_2 = 0.1 \times 1 \times 20 = 0.02 \times 5$$

$$V = 20 \text{ mL}$$

$\times \checkmark$

Inorganic chemistry theory questions

Question 12: Halogen Oxoacids

The correct order of acidic strength of halogen oxoacids is:

- A. $\text{HClO}_4 > \text{HClO}_3 > \text{HClO}_2 > \text{HClO}$
- ~~B. $\text{HClO} > \text{HClO}_2 > \text{HClO}_3 > \text{HClO}_4$~~
- ~~C. $\text{HIO}_4 > \text{HBrO}_4 > \text{HClO}_4$~~
- ~~D. $\text{HClO}_4 > \text{HBrO}_4 > \text{HIO}_4$~~

Choose the correct answer from the options given below:

- A. A and D only
- B. A and C only
- C. B and D only
- D. A, C and D only

Same halogen, more Oxygen
= Stronger

Same O.S., Smaller halogen
= Stronger

Inorganic chemistry theory questions

Question 11: Coordination Number and Geometry

Match the following complexes with their coordination numbers and geometries:

Complex: $[\text{Fe}(\text{C}_2\text{O}_4)_3]^{3-}$ — *b*

Complex: $[\text{Ni}(\text{CO})_4]$ — *a*

Complex: $[\text{Cu}(\text{NH}_3)_4]^{2+}$ — *c*

Complex: $[\text{CoF}_6]^{3-}$ — *d*

The coordination number and geometry of $[\text{Fe}(\text{C}_2\text{O}_4)_3]^{3-}$ is:

- A. 3, trigonal planar
- B. 6, octahedral
- C. 4, square planar
- D. 6, trigonal prismatic

Inorganic chemistry theory questions

Question 10: Actinoid Properties

Which of the following statements are INCORRECT about actinoids?

- A. All actinoids are radioactive in nature
- B. Actinoid contraction is greater than lanthanoid contraction due to poor shielding of 5f electrons
- C. Actinoids show higher oxidation states than lanthanoids, with uranium showing up to +6
- D. The most common oxidation state of all actinoids is +3, similar to lanthanoids

+3 to +7

Choose the correct answer:

- A. D only
- B. A and D only
- C. C and D only
- D. All are correct

Inorganic chemistry theory questions

Question 9: Oxygen Family Anomalies

Consider the following statements about Group 16 elements:

- A. The boiling point order is $\text{H}_2\text{O} > \text{H}_2\text{S} > \text{H}_2\text{Se} > \text{H}_2\text{Te}$ due to hydrogen bonding in H_2O
- B. The bond angle decreases in the order $\text{H}_2\text{O} > \text{H}_2\text{S} > \text{H}_2\text{Se} > \text{H}_2\text{Te}$ due to decreasing electronegativity
 - H_2O $\rightarrow 104.5^\circ$
 - H_2S $\rightarrow 92^\circ$
- C. SF_6 is kinetically inert while SCl_6 does not exist due to larger size of chlorine
- D. Oxygen shows oxidation states from -2 to +2, while sulfur shows -2 to +6

Choose the correct statements:

- A. A, B and C only
- B. A, C and D only
- C. B, C and D only
- D. A, B, C and D

d -Orbital

Inorganic chemistry theory questions

Question 8: Crystal Field Splitting

Given below are two statements about coordination compounds:

Assertion A: The complex $[\text{Ni}(\text{CN})_4]^{2-}$ is diamagnetic while $[\text{NiCl}_4]^{2-}$ is paramagnetic.

Reason R: CN^- is a strong field ligand causing electron pairing, while Cl^- is a weak field ligand.

In the light of the above statements, choose the correct answer:

- A. Both A and R are true and R is the correct explanation of A
- B. Both A and R are true but R is NOT the correct explanation of A
- C. A is true but R is false
- D. A is false but R is true

Inorganic chemistry theory questions

Question 7: d-Block Electronic Configuration

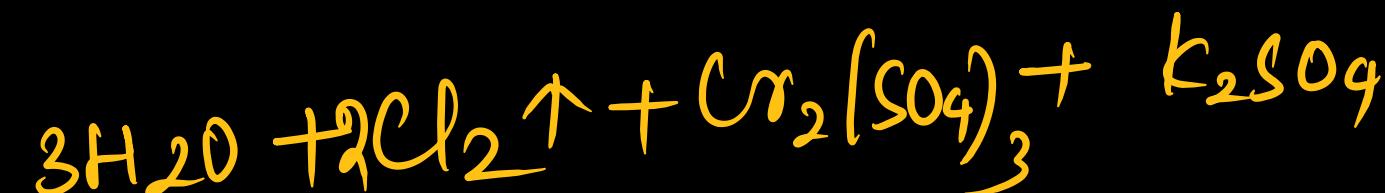
Which of the following pairs of elements have nearly identical atomic radii despite being in different periods?

- A. Zr and Hf
- B. Nb and Ta
- C. Mo and W
- D. Fe and Ru

Choose the correct answer:

- A. A and B only
- B. A, B and C only
- C. B, C and D only
- D. A, B, C and D

Inorganic chemistry theory questions


Question 6: $K_2Cr_2O_7$ Reactions

Identify the incorrect statement about the reactions of potassium dichromate:

- A. $K_2Cr_2O_7$ reacts with $FeSO_4$ in acidic medium to produce $Fe_2(SO_4)_3$ and $Cr_2(SO_4)_3$ ✓
- B. $K_2Cr_2O_7$ on heating with KCl and conc. H_2SO_4 liberates chlorine gas ✓
- C. $K_2Cr_2O_7$ reacts with H_2O_2 in acidic medium to form blue-colored peroxochromate CrO_5
- D. $K_2Cr_2O_7$ reacts with $NaOH$ to form Na_2CrO_4 without any change in oxidation state

Choose the most appropriate answer from the options given below:

- A. B only
- B. C only
- C. B and C only
- D. All statements are correct ✓

Inorganic chemistry theory questions

Question 5: Ionization Energy Anomaly in Group 13

The first ionization energy of elements in group 13 follows the order:

This trend is anomalous because:

- A. Ga has higher ionization energy than Al due to presence of completely filled $3d^{10}$ orbitals which provide poor shielding
- B. The expected trend should be $\text{B} > \text{Al} > \text{Ga} > \text{In} > \text{Tl}$ based on atomic size alone
- C. The anomaly is due to inert pair effect becoming prominent from Al onwards
- D. Al has lower ionization energy than Ga due to larger atomic radius

Choose the correct answer:

- A. A and B only
- B. B and D only
- C. A, B and D only
- D. A and D only

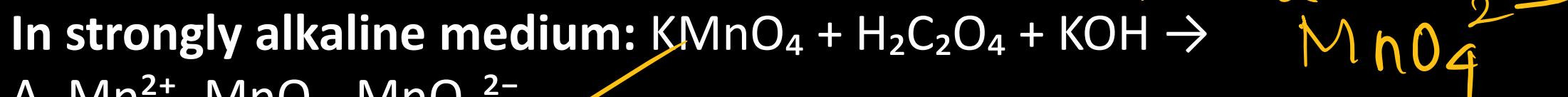
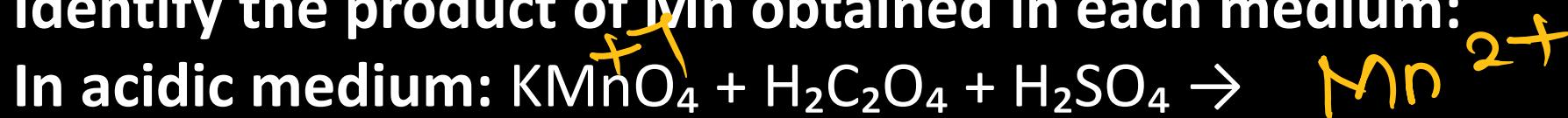
Inorganic chemistry theory questions

Question 4: Coordination Compounds - Isomerism

Consider the following coordination compounds:

- (i) $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{SO}_4$
- (ii) $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$
- (iii) $[\text{Co}(\text{en})_2\text{Cl}_2]^+$
- (iv) $[\text{Cr}(\text{NH}_3)_3\text{Cl}_3]$

Which of the above can exhibit geometrical isomerism?

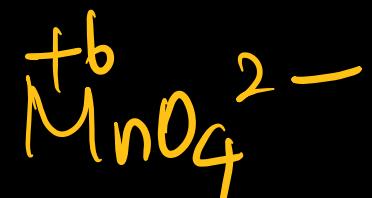


- A. (ii) and (iii) only
- B. (i), (ii) and (iii) only
- C. (ii), (iii) and (iv) only
- D. (i), (ii), (iii) and (iv)

Inorganic chemistry theory questions

Question 3: KMnO_4 Oxidation in Different Media

Potassium permanganate oxidizes oxalic acid in different media.

Identify the product of Mn obtained in each medium:


- A. Mn^{2+} , MnO_2 , MnO_4^{2-}
- B. MnO_2 , MnO_4^{2-} , Mn^{2+}
- C. Mn^{2+} , MnO_4^{2-} , MnO_2
- D. MnO_4^{2-} , MnO_2 , Mn^{2+}

Inorganic chemistry theory questions

Statement I: Potassium permanganate on heating at 573 K forms potassium manganate ✓

$\text{MnO}_4^- \Rightarrow \text{diamag}$ $3d^5 4s^2$

Statement II: Both potassium permanganate and potassium manganate are tetrahedral and paramagnetic in nature $3d^1$

Inorganic chemistry theory questions

Question 2: Lanthanoid Contraction

Which of the following statements are correct about lanthanoids?

- A. The ionic radii of lanthanoids decrease steadily from La^{3+} to Lu^{3+} due to lanthanoid contraction
- B. Lanthanoid contraction is due to imperfect shielding of 4f electrons
- C. Ce^{4+} is a strong oxidizing agent while Eu^{2+} is a strong reducing agent
- D. All lanthanoids exhibit +3 oxidation state and their compounds are generally colored

Choose the correct answer from the options given below:

- A. A, B and C only
- B. B, C and D only
- C. A, C and D only
- D. A, B, C and D

Inorganic chemistry theory questions

Statement A: All group 16 elements form oxides of general formula EO_2 and EO_3 where $E = S, Se, Te$ and Po . Both types are acidic in nature.

✓ Statement B: TeO_2 is an oxidising agent while SO_2 is reducing in nature

Statement C: The reducing property decreases from H_2S to H_2Te down the group
increases.

Inorganic chemistry theory questions

Statement (A): Decreasing order of atomic radii: Tl > In > Ga > Al > B

~~Statement (B):~~ Down group 13, electronegativity decreases from top to bottom

~~Statement (C):~~ Al dissolves in dil. HCl and liberates H₂, but conc. HNO₃ renders Al passive by forming a protective oxide layer

~~Statement (D):~~ All elements of group 13 exhibit highly stable +1 oxidation state

~~Statement (E):~~ Hybridization of Al in [Al(H₂O)₆]³⁺ ion is sp³d²

Inorganic chemistry theory questions

Statement A: Stability decreases in order $\text{NH}_3 > \text{PH}_3 > \text{AsH}_3 > \text{SbH}_3 > \text{BiH}_3$

Statement B: Reducing ability increases in order $\text{NH}_3 < \text{PH}_3 < \text{AsH}_3 < \text{SbH}_3 < \text{BiH}_3$

Statement C: Among the hydrides, NH_3 is strong reducing agent while BiH_3 is mild reducing agent

Statement D: Basicity increases in order $\text{NH}_3 < \text{PH}_3 < \text{AsH}_3 < \text{SbH}_3 < \text{BiH}_3$

Inorganic chemistry theory questions

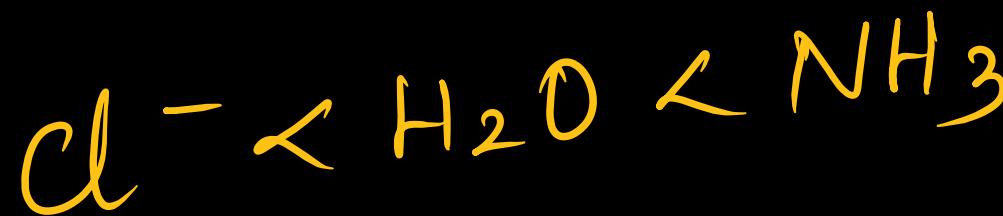
The group 14 elements A and B have the first ionisation enthalpy values of 708 and 715 kJ mol^{-1} respectively. The above values are lowest among their group members. The nature of their ions A^{2+} B^{4+} respectively is

- a) both reducing
- b) both oxidising
- c) reducing and oxidising
- d) oxidising and reducing

C

Si

Ge


$\text{Sn} - 708 - \text{Sn}^{2+}$

$\text{Pb} - 715 - \text{Pb}^{4+} \rightarrow \text{Pb}^{2+}$

Inorganic chemistry theory questions

Assertion A: $[\text{CoCl}(\text{NH}_3)_5]^{2+}$ absorbs at lower wavelength of light with respect to $[\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+}$

Reason R: The wavelength of light absorbed depends on the oxidation state of the metal ion.

\downarrow
Smaller $\Delta_o \rightarrow$ $\begin{array}{l} \text{Absorbs} \\ \text{(lower energy)} \\ \downarrow \\ \text{Longer wvl.} \end{array}$

Inorganic chemistry theory questions

Iron (III) catalyses the reaction between iodide and persulphate ions, in which A. Fe^{3+} oxidises the iodide ion B. Fe^{3+} oxidises the persulphate ion C. Fe^{2+} reduces the iodide ion D. Fe^{2+} reduces the persulphate ion Choose the most appropriate answer from the options given below:

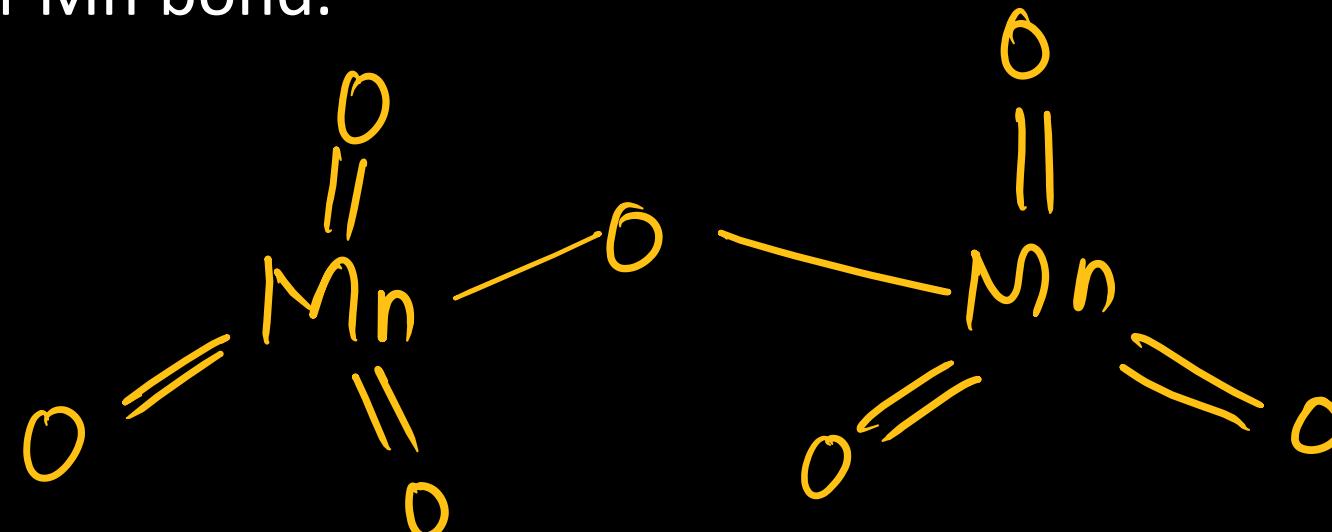
Inorganic chemistry theory questions

Which of the following statements are correct about Zn, Cd and Hg?

Statement A: They exhibit high enthalpy of atomization as the d-subshell is filled

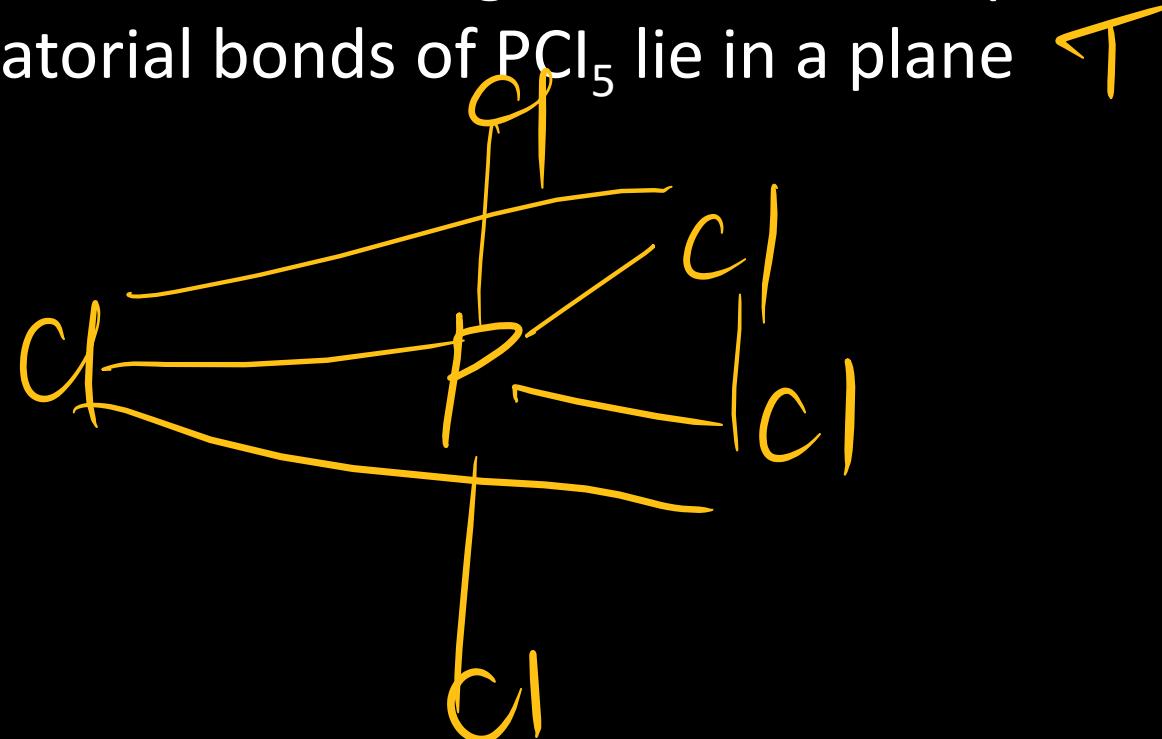
Statement B: Zn and Cd do not show variable oxidation state while Hg shows

Statement C: Compounds of Zn, Cd and Hg are paramagnetic in nature


Statement D: Zn, Cd and Hg are called soft metals

Inorganic chemistry theory questions

Highest oxidation state of Mn is exhibited in Mn_2O_7 . The correct statements about Mn_2O_7 are


- (A) Mn is tetrahedrally surrounded by oxygen atoms.
- (B) Mn is octahedrally surrounded by oxygen atoms.
- (C) Contains Mn-O-Mn bridge
- (D) Contains Mn-Mn bond.

Inorganic chemistry theory questions

Identify the incorrect statement for PCl_5 from the following.

- a) In this molecule, orbitals of phosphorus are assumed to undergo sp^3d hybridization. \checkmark
- b) The geometry of PCl_5 is trigonal bipyramidal. \checkmark
- c) PCl_5 has two axial bonds stronger than three equatorial bonds.
- d) The three equatorial bonds of PCl_5 lie in a plane \checkmark

