A level test 1_merged

12 May 2025 13:17

A level test 1_merged

Medium Questions

1 (a) Propane reacts with chlorine to form chloropropane.

$$\mathsf{C_3H_8}(\mathsf{g}) + \mathsf{CI_2}(\mathsf{g}) \to \mathsf{C_3H_7CI}(\mathsf{g}) + \mathsf{HCI}(\mathsf{g})$$

i) Use bond energies from Table 1.1 to calculate the enthalpy change for this reaction.

Table 1.1

Bond	Bond Energy
С-Н	410
C-CI	340
CI-CI	242
H-CI	431

Include a sign in your answer.

	enthalpy change =	. kJ mol ^{–1}
		[3]
ii) State the conditions needed for this rea	ction to occur.	
		[1]

		(4 marks
	Using Fig. 1.1, construct a labelled reaction pathway diagram for the reactio including the activation energy.	n in part (a)
	Enthalpy ↑	
	Progress of read	>
	Progress of read	> ction
	Progress of read Fig. 1.1	> ction
		-> ction
		-> etion
		-> ction
(c)		ction
	Fig. 1.1	
	Fig. 1.1 Ethane and chlorine will also react together under the same conditions.	
	Fig. 1.1 Ethane and chlorine will also react together under the same conditions.	

Suggest, with a reason, whether the sum of the bonds broken would be larger or small compared to the reaction between propane and chlorine.
compared to the reaction between propane and chilorine.
(2 mark
(Z 111011

2 (a) The apparatus shown in Fig. 2.1 can be used to determine the enthalpy of combustion of butan-1-ol, C_4H_9OH ($M_r=74.12$ gmol⁻¹).

Fig. 2.1

i) Write an equation to represent the enthalpy of combustion of butan-1-ol.	
[2]	
ii) Suggest the purpose of the copper spiral and small electric heater in the apparatus.	
[2]	Charles and
	2
(4 marks)	

(b)	An experiment	vas carried out ar	nd the follow	measurements were	recorded in	Table 2.1
-----	---------------	--------------------	---------------	-------------------	-------------	-----------

Table 2.1

Mass of butan-1-ol / g	2.20 g	Initial temperature of water / °C	22.5
Volume of water / cm ³	875 cm ³	Final temperature of water / °C	25.0

	Volume of water / cm ³	875 cm ³	Final temperature of water / °C	25.0
	(Specific heat capacity of wat Use the data to calculate the two significant figures.		$q = \dots$	
(c)		ombustion of	(2 f butan-1-ol using Table 2.1 and your ans	marks) swer to
	part (b) . Give your answer to three sign	gnificant figu	res.	
			$\Delta H = \dots$	kJ mol ⁻¹
			(3	marks)

3 (a) Two common oxides of nitrogen are nitrogen monoxide, NO, and nitrogen dioxide, NO ₂ .
i) Complete Table 3.1 to show the oxidation number of nitrogen in each compound.

Table 3.1

Compound	NO	NO ₂
oxidation number of N		

[1]

- ii) Write equations for the formation of NO_2 by:
 - The reaction of N₂ with O₂
 - The reaction of NO with O₂

[2]

(1 mark)

(b) Molecules of NO_2 can be formed by the reaction between N_2 and O_2 . The bond between the N and O atoms in NO_2 is a double covalent bond.

The enthalpy change of reaction for this reaction is $+497 \text{ kJ} \text{ mol}^{-1}$. Calculate the bond enthalpy, in kJ mol⁻¹, of the N=O bond. Use relevant data from Table 3.2.

Table 3.2

Bond	Bond energy / kJ mol ⁻¹
N≡N	941
O=O	495

	Bond enthalpy of the N=O bond =	. kJ mol ^{–1} [2]
		(3 marks)
(c)	The boiling points of carbon dioxide and nitrogen dioxide are -78.5 $^{\circ}\text{C}$ and 21 respectively.	°C
	Suggest a reason for the difference.	
		(2 marks)
(d)	Write an equation for the enthalpy of formation of nitrogen monoxide, NO.	
		(1 mark)

4 (a) Propane gas is used widely as a fuel which can be be used in camping gas stoves. The enthalpy of combustion for propane is -2219.2 kJ mol⁻¹. What is the minimum mass of fuel is needed to bring 150 cm³ of water at 21 °C to its boiling point? Show your working. g (3 marks) (b) Suggest why more propane may be required than calculated in part (a). (1 mark) (c) Using Fig. 5.1, construct a labelled reaction pathway diagram for the reaction in part (a) including the activation energy. Enthalpy ↑ Progress of reaction Fig. 5.1

Hard Questions

The enthalpy of solution of ammonium chloride is +15.1 kJ mol ⁻¹ . Determine the energy change, in J, when 12.04 g of ammonium chloride is dissolved in 125.0 cm ³ of water. (2 marks) (b) Use your answer to part (a) to determine the change in temperature, in °C, when the ammonium chloride is dissolved. (1 mark) (c) Use your answer to part (b) to determine the final temperature, in °C, of the solution during the reaction. (1 mark)	1 (a)	The enthalpy change of solution for ammonium chloride can be measured using calorimetry. 12.04 g of ammonium chloride is dissolved in 125.0 cm 3 of water at 19.5 °C.
 (b) Use your answer to part (a) to determine the change in temperature, in °C, when the ammonium chloride is dissolved.		
ammonium chloride is dissolved. (1 mark) (c) Use your answer to part (b) to determine the final temperature, in °C, of the solution during the reaction.		(2 marks)
(c) Use your answer to part (b) to determine the final temperature, in °C, of the solution during the reaction.	(b)	
during the reaction.		(1 mark)
(1 mark)	(c)	
		(1 mark)

2 (a) Determine the enthalpy of hydrogenation of propene using the data in Table 2.1.

Table 2.1

Bond	Bond enthalpy / kJ mol ⁻¹
Н-Н	435
C-H	413
C-C	347
C=C	619

	Enthalpy of hydrogenation, ΔH_r =	kJ mol ⁻¹
		(3 marks)
(b)	Use the data in Table 2.1 to suggest, with a reason, whether the polymerisation propene is exothermic or endothermic	on of
		(2 marks)
(c)	Carbon, hydrogen and ethene each burn exothermically in an excess of air.	

$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H_{c}^{\theta} = -393.7 \text{ kJ mol}^{-1}$
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$	$\Delta H_{c}^{\theta} = -285.9 \text{ kJ mol}^{-1}$
$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$	$\Delta H_{c}^{\theta} = -1411.0 \text{ kJ mol}^{-1}$

Use the data to calculate the standard enthalpy change of formation, ΔH^{θ}_{f} , in kJ mol⁻¹, of ethene at 298 K.

$$2C (s) + 2H_2(g) \rightarrow C_2H_4(g)$$

$$\Delta H^{\theta}_f = \dots \qquad kJ \text{ mol}^{-1}$$
 (2 marks)

Hard Questions

1 In the gas phase, phosphorus pentachloride can be thermally decomposed into gaseous phosphorus trichloride and chlorine.

$$PCl_5 \rightarrow PCl_3 + Cl_2$$

The table below gives the relevant bond energies found in these compounds.

Bond	Bond energy / kJ mol ⁻¹
P – Cl (in both chlorides)	328
CI – CI	241

What is the enthalpy change in the decomposition of the reaction?

- **A.** 415 kJ mol⁻¹
- **B.** + 415 kJ mol^{-1}
- $C. + 95 \text{ kJ mol}^{-1}$
- **D.** 95 kJ mol^{-1}

(1 mark)

2 In a calorimetric experiment 2.50 g of a fuel is burnt in oxygen. 30 % of the energy released during the combustion is absorbed by 500 g of water, the temperature of which rises from 25 °C to 68 °C.

The specific heat capacity of water is $4.18 \, \mathrm{J g^{-1} K^{-1}}$.

What is the total energy released per gram of fuel burnt?

- **A.** 25 284 J
- **B.** 63 210 J
- **C.** 119 827 J
- **D.** 301 000 J

(1 mark)

3 Which equation correctly shows how the bond energy for the covalent bond Y-Z can be calculated by dividing ΔH by n?

- **A.** n YZ (g) \rightarrow n Y (g) + $\frac{n}{2}$ Z₂ (g)
- $\pmb{B.} \ Z (g) + Y \ Z_{n\text{-}1} (g) \rightarrow Y Z_n (g)$
- **C.** $2 \text{ YZ}_n (g) \rightarrow 2 \text{ YZ}_{n-1} (g) + \text{Y}_2 (g)$
- **D.** $YZ_n(g) \rightarrow Y(g) + nZ(g)$

(1 mark)

4 The diagram shows the skeletal formula of cyclobutane.

The enthalpy change of formation of cyclobutane is $+75.1 \text{ kJ} \text{ mol}^{-1}$, and the enthalpy change of atomisation of graphite is $+712 \text{ kJ} \text{ mol}^{-1}$.

The bond enthalpy of C-H is 390 kJ mol^{-1} and of H-H is 429 kJ mol^{-1} .

What is the average bond enthalpy of the C–C bond in cyclobutane, rounded to the nearest whole number?

- **A.** 236 kJ mol⁻¹
- **B.** 315 kJ mol⁻¹
- **C.** 342 kJ mol⁻¹
- **D.** 700 kJ mol^{-1}

(1 mark)

5 Some bond energy values are listed below.

Bond	Bond energy / kJ mol ⁻¹
Br – Br	194
CI – CI	247
C – H	412
C – Cl	338

These bond energy values relate to the following four reactions:

W	$Br_2 \rightarrow 2Br$
Х	$2CI \rightarrow CI_2$
Υ	CH ₃ + CI → CH ₃ CI
Z	$CH_4 \rightarrow CH_3 + H$

What is the correct order of enthalpy changes of the above reactions from most negative to most positive?

$$\textbf{A.} \ Y \rightarrow Z \rightarrow W \rightarrow X$$

$$\textbf{B.} \ Z \to W \to X \to Y$$

$$\textbf{C.} \ Y \to X \to W \to Z$$

$$\textbf{D.} \ X \to Y \to Z \to W$$

(1 mark)